Background: Difficulties with speech-in-noise perception in autism spectrum disorders (ASD) may be associated with impaired analysis of speech sounds, such as vowels, which represent the fundamental phoneme constituents of human speech. Vowels elicit early (< 100 ms) sustained processing negativity (SPN) in the auditory cortex that reflects the detection of an acoustic pattern based on the presence of formant structure and/or periodic envelope information (f0) and its transformation into an auditory "object".
Methods: We used magnetoencephalography (MEG) and individual brain models to investigate whether SPN is altered in children with ASD and whether this deficit is associated with impairment in their ability to perceive speech in the background of noise.
Tumor cells of acute lymphoblastic leukemia (ALL) may have various genetic abnormalities. Some of them lead to a complete loss of certain genes. Our aim was to reveal biallelic deletions of genes in Ph-negative T-ALL.
View Article and Find Full Text PDFMultiple myeloma (MM) is a disease characterized by spatiotemporal heterogeneity of tumor clones. Different genetic aberrations can be observed simultaneously in tumor cells from different loci, and as the disease progresses, new subclones may appear. The role of liquid biopsy, which is based on the analysis of tumor DNA circulating in the blood plasma, continues to be explored in MM.
View Article and Find Full Text PDFThe landscape of chromosomal aberrations in the tumor cells of the patients with B-ALL is diverse and can influence the outcome of the disease. Molecular karyotyping at the onset of the disease using chromosomal microarray (CMA) is advisable to identify additional molecular factors associated with the prognosis of the disease. Molecular karyotyping data for 36 patients with Ph-negative B-ALL who received therapy according to the ALL-2016 protocol are presented.
View Article and Find Full Text PDFThe spectral formant structure and periodicity pitch are the major features that determine the identity of vowels and the characteristics of the speaker. However, very little is known about how the processing of these features in the auditory cortex changes during development. To address this question, we independently manipulated the periodicity and formant structure of vowels while measuring auditory cortex responses using magnetoencephalography (MEG) in children aged 7-12 years and adults.
View Article and Find Full Text PDF