The key challenge to the biotechnological applications of amylases is achieving high activity and stability under extreme pH, temperature and often high levels of enzyme denaturants. This study immobilized a novel raw starch-digesting (RSD) amylase from Paenibacillus lactis OPSA3 on glutaraldehyde-activated silver nanoparticles. Effects of time, glutaraldehyde concentration, pH, temperature, and enzyme concentration on immobilization were studied, and the immobilized enzymes were characterized.
View Article and Find Full Text PDFProtein engineering mechanisms can be an efficient approach to enhance the biochemical properties of various biocatalysts. Immobilization of biocatalysts and the introduction of new-to-nature chemical reactivities are also possible through the same mechanism. Discovering new protocols that enhance the catalytic active protein that possesses novelty in terms of being stable, active, and, stereoselectivity with functions could be identified as essential areas in terms of concurrent bioorganic chemistry (synergistic relationship between organic chemistry and biochemistry in the context of enzyme engineering).
View Article and Find Full Text PDFRecent advancements in protein/enzyme engineering have enabled the production of a diverse array of high-value compounds in microbial systems with the potential for industrial applications. The goal of this review is to articulate some of the most recent protein engineering advances in bacteria, yeast, and other microbial systems to produce valuable substances. These high-value substances include α-farnesene, vitamin B12, fumaric acid, linalool, glucaric acid, carminic acid, mycosporine-like amino acids, patchoulol, orcinol glucoside, d-lactic acid, keratinase, α-glucanotransferases, β-glucosidase, seleno-methylselenocysteine, fatty acids, high-efficiency β-glucosidase enzymes, cellulase, β-carotene, physcion, and glucoamylase.
View Article and Find Full Text PDFThis study aimed to isolate thermostable, alkaliphilic, and detergent-tolerant amylase-producing bacteria. Pure isolates from environmental samples were screened on a starch-based medium (pH 11), and selected isolates were identified using cultural and molecular techniques. Product optimization studies were conducted, and secreted amylase was partially purified using 40% (w/v) saturation ammonium sulfate at 4 °C.
View Article and Find Full Text PDFIntroduction: Probiotic lactobacilli are generally recognized as safe (GRAS) and are being used in several food and pharma formulations. However, growing concern of antibiotic resistance in bacterial strains of food origin and its possible transmission via functional foods is increasingly being emphasized.
Objectives: This study screened potential probiotic lactic acid bacteria (LAB) strains for their phenotypic and genotypic antibiotic resistance profiles.