Publications by authors named "T Mulnix"

Article Synopsis
  • Quantitative molecular imaging using PET is vital for understanding brain disorders, and the newly developed NeuroEXPLORER system enhances imaging quality with improved spatial resolution and sensitivity.
  • The study assessed the NeuroEXPLORER's quantitative precision and accuracy using various phantom and human data, focusing on critical imaging conditions for dynamic neuroimaging.
  • Results indicated that the NeuroEXPLORER maintained high accuracy in quantifying brain activity and showed minimal biases, making it suitable for short-frame reconstructions in neuroimaging studies.
View Article and Find Full Text PDF

The collaboration of Yale, the University of California, Davis, and United Imaging Healthcare has successfully developed the NeuroEXPLORER, a dedicated human brain PET imager with high spatial resolution, high sensitivity, and a built-in 3-dimensional camera for markerless continuous motion tracking. It has high depth-of-interaction and time-of-flight resolutions, along with a 52.4-cm transverse field of view (FOV) and an extended axial FOV (49.

View Article and Find Full Text PDF

Background And Purpose: Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous neurodegenerative condition with a prevalence comparable to Alzheimer's disease for patients under 65 years of age. Limited studies have examined the association between cognition and neuroimaging in FTD using different imaging modalities.

Methods: We examined the association of cognition using Montreal Cognitive Assessment (MoCA) with both gray matter (GM) volume and glucose metabolism using magnetic resonance imaging and fluorodeoxyglucose (FDG)-PET in 21 patients diagnosed with FTD.

View Article and Find Full Text PDF

Background: Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous condition with a prevalence comparable to Alzheimer's Disease for patients under sixty-five years of age. Gray matter (GM) atrophy and glucose hypometabolism are important biomarkers for the diagnosis and evaluation of disease progression in FTD. However, limited studies have systematically examined the association between cognition and neuroimaging in FTD using different imaging modalities in the same patient group.

View Article and Find Full Text PDF

Head motion correction (MC) is an essential process in brain positron emission tomography (PET) imaging. We have used the Polaris Vicra, an optical hardware-based motion tracking (HMT) device, for PET head MC. However, this requires attachment of a marker to the subject's head.

View Article and Find Full Text PDF