Publications by authors named "T Morlanes"

A diffractive optical element was fabricated by monolithically integrating two volume phase-gratings (VPGs) in the bulk of a single-piece transparent material. A computer model of the diffraction generated by the double volume phase-grating (DVPG) was made with a rigorous coupled wave analysis simulator. Simulations and experiments show that the diffractive behavior of a DVPG can be controlled by arranging the relative displacement and the distance between the VPGs according to Talbot self-imaging planes.

View Article and Find Full Text PDF

In this Letter, we analyze the near-field diffraction pattern produced by chirped gratings. An intuitive analytical interpretation of the generated diffraction orders is proposed. Several interesting properties of the near-field diffraction pattern can be determined, such as the period of the fringes and its visibility.

View Article and Find Full Text PDF

A simple collimation technique based on measuring the period of one self-image produced by a diffraction grating is proposed. Transversal displacement of the grating is not required, and then automatic single-frame processing can be performed. The self-image is acquired with a CMOS camera, and the period is computed using the variogram function.

View Article and Find Full Text PDF

We present a collimation technique based on a double grating system to locate with high accuracy an emitter in the focal plane of a lens. Talbot self-images are projected onto the second grating producing moiré interferences. By means of two photodetectors positioned just behind the second grating, it is possible to determine the optimal position of the light source for collimation by measuring the phase shift between the signals over the two photodetectors.

View Article and Find Full Text PDF

Two-grating measurement systems are routinely employed for high-resolution measurements of angular and linear displacement. Usually, these systems incorporate zero reference codes (ZRCs) to obtain a zero reference signal (ZRS), which is used as a stage-homing signal. This signal provides absolute information of the position to the otherwise relative information provided by the two-grating incremental subsystems.

View Article and Find Full Text PDF