Biological nanoparticles, such as exosomes, offer an approach to drug delivery because of their innate ability to transport biomolecules. Exosomes are derived from cells and an integral component of cellular communication. However, the cellular cargo of human exosomes could negatively impact their use as a safe drug carrier.
View Article and Find Full Text PDFDNA-based computers can potentially analyze complex sets of biological markers, thereby advancing diagnostics and the treatment of diseases. Despite extensive efforts, DNA processors have not yet been developed due, in part, to limitations in the ability to integrate available logic gates into circuits. We have designed a NAND gate, which is one of the functionally complete set of logic connectives.
View Article and Find Full Text PDFExosomes are naturally secreted extracellular bilayer vesicles (diameter 40-130 nm), which have recently been found to play a critical role in cell-to-cell communication and biomolecule delivery. Their unique characteristics-stability, permeability, biocompatibility and low immunogenicity-have made them a prime candidate for use in delivering cancer therapeutics and other natural products. Here we present the first ever report of echogenic exosomes, which combine the benefits of the acoustic responsiveness of traditional microbubbles with the non-immunogenic and small-size morphology of exosomes.
View Article and Find Full Text PDF