The antibiotic resistance in many pathogenic bacteria has become a major clinical problem, therefore, the necessity arises to search for new therapeutic strategies. The most promising solution lies in bacteriophages, phage endolysins and antimicrobial peptides. The aim of this study is to review the possibilities for the common use of bacteriophages, phage endolysins and antimicrobial peptides, both in the form of combined therapies and new strategies for the production of peptide drugs.
View Article and Find Full Text PDFThe emergence of resistance in microorganisms on a global scale has made it necessary to search for new antimicrobial factors. Antimicrobial peptides (AMPs) seem to meet these expectations. AMPs are produced by bacteria, viruses, plants, and animals, and may be considered as a new class of drugs intended for the prophylaxis and treatment of both systemic and topical infections.
View Article and Find Full Text PDFBoth the known biological agents that cause infectious diseases, as well as modified (ABF-Advanced Biological Factors) or new, emerging agents pose a significant diagnostic problem using previously applied methods, both classical, as well as based on molecular biology methods. The latter, such as PCR and real-time PCR, have significant limitations, both quantitative (low capacity), and qualitative (limited number of targets). The article discusses the results of studies on using the microarray method for the identification of viruses (e.
View Article and Find Full Text PDFFolia Biol (Praha)
September 2016
Bacillus anthracis is a spore-forming, Gram-positive microorganism. It is a causative agent of anthrax, a highly infectious disease. It belongs to the "Bacillus cereus group", which contains other closely related species, including Bacillus cereus, Bacillus thuringiensis, Bacillus mycoides, Bacillus weihenstephanensis, and Bacillus pseudomycoides.
View Article and Find Full Text PDFFor the first time, a series of tertiary amides of polyether antibiotic-Salinomycin have been obtained and screened for their antibacterial activity against different strains of bacteria, including Bacillus anthracis and clinical methicillin-resistant Staphylococcus epidermidis (MRSE). Moreover, biofilm inhibition of MRSE and genotoxicity tests against Bacillus subtilis have been performed. Our studies show that Salinomycin and its some derivatives are active against tested bacteria and exhibited definitely bacteriostatic, not bactericidal activity.
View Article and Find Full Text PDF