Publications by authors named "T Merdzhanova"

Development of photovoltaic-electrochemical (PV-EC) systems for energy storage and industry decarbonization requires multidisciplinary collaborative efforts of different research groups from both photovoltaic and electrochemical research communities. Consequently, the evaluation of the solar-to-chemical or solar-to-fuel efficiency of a new electrolyzer (EC) as a part of a PV-EC system is a time-consuming task that is challenging in a routine optimization loop. To address this issue, a new rapid assessment method is proposed.

View Article and Find Full Text PDF

Invited for this month's cover is the group of Javier Pérez-Ramírez at ETH Zürich, which collaborated with the group of Tsvetelina Merdzhanova at Forschungszentrum Jülich. The image shows how artificial leaves, able to recycle carbon dioxide into syngas of variable composition, could be integrated with chemical plants. The Research Article itself is available at 10.

View Article and Find Full Text PDF

Artificial leaves (a-leaves) can reduce carbon dioxide into syngas using solar power and could be combined with thermo- and biocatalytic technologies to decentralize the production of valuable products. By providing variable CO : H ratios on demand, a-leaves could facilitate optimal combinations and control the distribution of products in most of these hybrid systems. However, the current design procedures of a-leaves concentrate on achieving high performance for a predetermined syngas composition.

View Article and Find Full Text PDF

Solar photovoltaic (PV) energy generation is highly dependent on weather conditions and only applicable when the sun is shining during the daytime, leading to a mismatch between demand and supply. Merging PVs with battery storage is the straightforward route to counteract the intermittent nature of solar generation. Capacity (or energy density), overall efficiency, and stability at elevated temperatures are among key battery performance metrics for an integrated PV-battery system.

View Article and Find Full Text PDF

The wings of the black butterfly, , are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure.

View Article and Find Full Text PDF