Publications by authors named "T Melin"

We report here the reversibility and bistability of the switching behavior in an azobenzene derivative induced by the bias applied by a scanning-tunneling microscopy (STM) tip, at low temperature and in ultra-high vacuum environment. Thisto-andto-switching were observed during STM imaging in either polarity at +2 V or -2 V, on a sub-second time scale. This results in a blinking effect visible on STM images, corresponding to the reversible switching of the azobenzene molecule under the applied STM bias through an electric field induced process.

View Article and Find Full Text PDF

Electrolyte additives are indispensable to enhance the performance of Li-ion batteries. Lithium bis(oxalato)borate (LiBOB) has been explored for many years, as it improves both cathode and anode performance. No consensus regarding its reaction mechanisms has, however, been established.

View Article and Find Full Text PDF

We report a study of the electron transport (ET) properties at the nanoscale (conductive-AFM denoted as C-AFM hereafter) of individual Prussian Blue Analog (PBA) cubic nanocrystals (NCs) of CsCoFe, with a size between 15 and 50 nm deposited on HOPG. We demonstrate that these PBA NCs feature an almost size-independent electron injection barrier of 0.41 ± 0.

View Article and Find Full Text PDF

Complete active space self-consistent field (CASSCF) and multireference configuration interaction with Davidson correction (MRCI+Q) calculations have been carried out for lawrencium fluoride (LrF) and lawrencium oxide (LrO) molecules, detailing 19 and 20 electronic states for LrF and LrO, respectively. For LrF, two dissociation channels were considered, Lr(P)+F(P) and Lr(D)+F(P). However, due to the more complex electronic manifold of LrO, three dissociation channels were computed: Lr(P)+O(P), Lr(D)+O(P), and Lr(P)+O(D).

View Article and Find Full Text PDF

The determination of gas phase thermochemical properties of per- and polyfluoroalkyl substances (PFAS) is central to understanding the long-range transport behavior of PFAS in the atmosphere. Prior gas-phase studies have reported the properties of perfluorinated sulfonic acid (PFOS) and perfluorinated octanoic acid (PFOA). Here, this study reports the gas phase enthalpies of formation of short- and long-chain PFAS and their precursor molecules determined using density functional theory (DFT) and ab initio approaches.

View Article and Find Full Text PDF