The NF-κB family of transcription factors is a master regulator of cellular responses during inflammation, and its dysregulation has been linked to chronic inflammatory diseases, such as inflammatory bowel disease. It is therefore of vital importance to design and test new effective NF-κB inhibitors that have the potential to be utilized in clinical practice. In this study, we used a commercial transgenic HeLa cell line as an NF-κB activation reporter to test a novel quinoline molecule, Q3, as a potential inhibitor of the canonical NF-κB pathway.
View Article and Find Full Text PDFThe rational design of AT1 receptor antagonists represents a pivotal approach in the development of therapeutic agents targeting cardiovascular pathophysiology. Sartans, a class of compounds engineered to inhibit the binding and activation of Angiotensin II on the AT1 receptor, have demonstrated significant clinical efficacy. This review explores the multifaceted role of sartans in mitigating hypertension and related complications.
View Article and Find Full Text PDFZinc is an essential micronutrient that participates in a multitude of cellular and biochemical processes. It is indispensable for normal growth and the maintenance of physiological functions. As one of the most significant trace elements in the body, zinc fulfills three primary biological roles: catalytic, structural, and regulatory.
View Article and Find Full Text PDFFurins are serine that are involved in many biological processes, where they play important roles in normal metabolism, in the activation of various pathogens, while they are a target for therapeutic intervention. Dichlorophenyl-pyridine "BOS" compounds are well known drugs that are used as inhibitors of human furin by an induced-fit mechanism, in which tryptophan W254 in the furin catalytic cleft acts as a molecular transition energy gate. The binding of "BOS" drug into the active center of furin has been computationally studied using the density functional theory (DFT) and ONIOM multiscaling methodologies.
View Article and Find Full Text PDFThe binding affinities and interactions between eight drug candidates, both commercially available (candesartan; losartan; losartan carboxylic acid; nirmatrelvir; telmisartan) and newly synthesized benzimidazole-N-biphenyltetrazole (ACC519T), benzimidazole bis-N,N'-biphenyltetrazole (ACC519T(2) and 4-butyl-N,N-bis([2-(2H-tetrazol-5-yl)biphenyl-4-yl]) methyl (BV6), and the active site of angiotensin-converting enzyme-2 (ACE2) were evaluated for their potential as inhibitors against SARS-CoV-2 and regulators of ACE2 function through Density Functional Theory methodology and enzyme activity assays, respectively. Notably, telmisartan and ACC519T(2) exhibited pronounced binding affinities, forming strong interactions with ACE2's active center, favorably accepting proton from the guanidinium group of arginine273. The ordering of candidates by binding affinity and reactivity descriptors, emerged as telmisartan > ACC519T(2) > candesartan > ACC519T > losartan carboxylic acid > BV6 > losartan > nirmatrelvir.
View Article and Find Full Text PDF