Oscillations in the chemical or physical properties of materials, composed of an odd or even number of connected repeating methylene units, are a well-known phenomenon in organic chemistry and materials science. So far, such behavior has not been reported for the important class of materials, perovskite semiconductors. This work reports a distinct odd-even oscillation of the molecular structure and charge carrier transport properties of phenylalkylammonium two-dimensional (2D) Sn-based perovskites in which the alkyl chains in the phenylalkylammonium cations contain varying odd and even carbon numbers.
View Article and Find Full Text PDFSince its first synthesis by Clar in 1948, terrylene - a fully connected ternaphthalene oligomer via naphthalene's peri-positions - has gained special focus within the rylene family, drawing interest for its unique chemical, structural, optoelectronic and single photon emission properties. In this study, we introduce a novel synthetic pathway that enhances the solubility of terrylene derivatives through complete peri-alkylation, while also facilitating extensions at the bay-positions. This approach not only broadens the scope of terrylene's chemical versatility but also opens new avenues for developing solution processable novel multi-edge nanographenes and tailoring electronic energy levels through topological edge structures.
View Article and Find Full Text PDF"Lunar phobia" in bats has been widely discussed since its description in tropical bats in 1978. The phenomenon has been frequently contested and supported and was first reported in European bats in 2020. Our study seeks to clarify the debate by describing the relationship between the activity of selected swarming vespertilionid bats (Family: Vespertilionidae) and moonlight levels.
View Article and Find Full Text PDFUnderstanding and controlling the nucleation and crystallization in solution-processed perovskite thin films are critical to achieving high in-plane charge carrier transport in field-effect transistors (FETs). This work demonstrates a simple and effective additive engineering strategy using pentanoic acid (PA). Here, PA is introduced to both modulate the crystallization process and improve the charge carrier transport in 2D 2-thiopheneethylammonium tin iodide ((TEA) SnI ) perovskite FETs.
View Article and Find Full Text PDF