Publications by authors named "T Mark McCleskey"

Polymer-assisted deposition (PAD) is one of the chemical solution deposition methods which have been successfully used to grow films, form coatings, and synthesize nanostructured materials. In comparison with other conventional solution-based deposition techniques, PAD differs in its use of water-soluble polymers in the solution that prevent the metal ions from unwanted chemical reactions and keep the solution stable. Furthermore, filtration to remove non-coordinated cations and anions in the PAD process ensures well controlled nucleation, which enables the growth of high quality epitaxial films with desired structural and physical properties.

View Article and Find Full Text PDF

The structures of a series of tetracoordinate beryllium(II) complexes with ligands derived from tertiary-substituted amines have been computationally modeled and their (9)Be magnetic shielding values determined using the gauge-including atomic orbital (GIAO) method at the 6-311++g(2d,p) level. A good correlation was observed between calculated (9)Be NMR chemical shifts when compared to experimental values in polar protic solvents, less so for the values recorded in polar aprotic solvents. A number of alternative complex structures were modeled, resulting in an improvement in experimental versus computational (9)Be NMR chemical shifts, suggesting that in some cases full encapsulation on the beryllium atom was not occurring.

View Article and Find Full Text PDF

We present a systematic comparison of the lattice structures, electronic density of states, and band gaps of actinide dioxides, AnO(2) (An=Th, Pa, U, Np, Pu, and Am) predicted by the Heyd-Scuseria-Ernzerhof screened hybrid density functional (HSE) with the self-consistent inclusion of spin-orbit coupling (SOC). The computed HSE lattice constants and band gaps of AnO(2) are in consistently good agreement with the available experimental data across the series, and differ little from earlier HSE results without SOC. ThO(2) is a simple band insulator (f(0)), while PaO(2), UO(2), and NpO(2) are predicted to be Mott insulators.

View Article and Find Full Text PDF

In this tutorial article, the recent development of polymer assisted deposition (PAD) for the growth of a wide range of materials, in particular in thin films, is reviewed. Specifically, we describe the unique chemistry and processes of PAD for the deposition of metals, metal-oxides, metal-nitrides, metal-carbides, and their derived composites. Many examples are given not only to illustrate the powerfulness of PAD for high quality coatings, but also to give readers an opportunity to evaluate this technique for specific applications.

View Article and Find Full Text PDF

Highly aligned carbon nanotube (CNT) ribbons were sandwiched in epitaxial superconducting NbC films by a chemical solution deposition method. The incorporation of aligned long CNTs into NbC film enhances the normal-state conductivity and improves the superconducting properties of the assembly.

View Article and Find Full Text PDF