Publications by authors named "T Mankame"

The expression of the angiogenic phenotype is regulated by a balance of pro-angiogenic and anti-angiogenic factors released into the tumor microenvironment. Nuclear protein 7 (NOL7), a novel tumor suppressor, acts as a master regulator of angiogenesis by downregulating pro-angiogenic factors and upregulating anti-angiogenic factors. Using cervical cancer as a model of investigation, we have previously shown that loss of NOL7 mRNA and protein expression is observed as early as the premalignant phase.

View Article and Find Full Text PDF
Article Synopsis
  • NOL7 is a potential tumor suppressor gene found at 6p23, a region often linked to cancer, particularly cervical cancer (CC), where its reintroduction can significantly reduce tumor growth.
  • Research into NOL7's inactivation revealed that many CC specimens show mutations and a decrease in NOL7 expression, indicating that genetic and epigenetic changes impact its function.
  • Overall, the findings align with the Knudson 2-hit hypothesis, suggesting that NOL7 is indeed a true tumor suppressor gene involved in the progression of cervical cancer.
View Article and Find Full Text PDF

Despite recent therapeutic advances, several factors, including field cancerization, have limited improvements in long-term survival for oral squamous cell carcinoma (OSCC). Therefore, comprehensive treatment plans must include improved chemopreventive strategies. Using the 4-nitroquinoline 1-oxide (4-NQO) mouse model, we tested the hypothesis that ZD6474 (Vandetanib, ZACTIMA) is an effective chemopreventive agent.

View Article and Find Full Text PDF

NOL7 is a candidate tumor suppressor gene that localizes to 6p23, a chromosomal region frequently associated with loss of heterozygosity in a number of malignancies including cervical cancer (CC). Re-expression of NOL7 in CC cells suppresses in vivo tumor growth by 95% and alters the angiogenic phenotype by modulating the expression of VEGF and TSP1. Here, we describe the determination of two NOL7 transcriptional start sites (TSS), the cloning of its regulatory promoter region, and the identification of transcription factors that regulate its expression.

View Article and Find Full Text PDF

Agricultural chemicals frequently alter human health or development, typically because they have endocrine agonist or antagonist activities and alter hormone-regulation of gene expression. The insecticide, diazinon, was evaluated for gene expression disrupting activity using MCF-7 cells, an estrogen-dependent human cell line, to examine the capacity of the insecticide to disrupt gene expression essential for morphological development, immune system development or function, and/or central nervous system development and function. MCF-7 cells were treated with 30, 50 or 67 ppm diazinon, and gene expression was measured in treated cells compared to expression in untreated or estrogen-treated cells.

View Article and Find Full Text PDF