The benzoxazolone nucleus is an ideal scaffold for drug design, owing to its discrete physicochemical profile, bioisosteric preference over pharmacokinetically weaker moieties, weakly acidic behavior, presence of both lipophilic and hydrophilic fragments on a single framework, and a wider choice of chemical modification on the benzene and oxazolone rings. These properties apparently influence the interactions of benzoxazolone-based derivatives with their respective biological targets. Hence, the benzoxazolone ring is implicated in the synthesis and development of pharmaceuticals with a diverse biological profile ranging from anticancer, analgesics, insecticides, anti-inflammatory, and neuroprotective agents.
View Article and Find Full Text PDFCarbamate group is mainly used for designing prodrugs to achieve first-pass and systemic stability against enzyme hydrolysis as the carbamate functionality is recognized by esterase enzymes. As compared to the ester functionality, the carbamate group shows a lesser lability towards enzyme hydrolysis, but a higher susceptibility than amides. Cyclic carbamates present a unique motif in the contemporary drug discovery and development owing to the presence of a polar, and sterically small, constrained Hydrogen-bonding acceptor atom.
View Article and Find Full Text PDFAlthough genetic transformation of soybean dates back to over two decades, the process remains inefficient. Here, we report the development of an organogenesis-based transformation method of soybean that resulted in an average transformation frequency of 18.7%.
View Article and Find Full Text PDFBiotechnology has been central for the acceleration of crop improvement over the last two decades. Since 1994, when the first commercial biotechnology-derived tomato crop was commercialized, the cultivated area for genetically modified crops has reached 185.1 million hactares worldwide.
View Article and Find Full Text PDF