Publications by authors named "T M Zaved Waise"

Impairments in mitochondrial physiology play a role in the progression of multiple neurodegenerative conditions, including peripheral neuropathy in diabetes. Blockade of muscarinic acetylcholine type 1 receptor (MR) with specific/selective antagonists prevented mitochondrial dysfunction and reversed nerve degeneration in in vitro and in vivo models of peripheral neuropathy. Specifically, in type 1 and type 2 models of diabetes, inhibition of MR using pirenzepine or muscarinic toxin 7 (MT7) induced AMP-activated protein kinase (AMPK) activity in dorsal root ganglia (DRG) and prevented sensory abnormalities and distal nerve fiber loss.

View Article and Find Full Text PDF

The gastrointestinal tract maintains energy and glucose homeostasis, in part through nutrient-sensing and subsequent signaling to the brain and other tissues. In this review, we highlight the role of small intestinal nutrient-sensing in metabolic homeostasis, and link high-fat feeding, obesity, and diabetes with perturbations in these gut-brain signaling pathways. We identify how lipids, carbohydrates, and proteins, initiate gut peptide release from the enteroendocrine cells through small intestinal sensing pathways, and how these peptides regulate food intake, glucose tolerance, and hepatic glucose production.

View Article and Find Full Text PDF

Objective: The mechanism of nutrient sensing in the upper small intestine (USI) and ileum that regulates glucose homeostasis remains elusive. Short-term high-fat (HF) feeding increases taurochenodeoxycholic acid (TCDCA; an agonist of farnesoid X receptor (FXR)) in the USI and ileum of rats, and the increase of TCDCA is prevented by transplantation of microbiota obtained from the USI of healthy donors into the USI of HF rats. However, whether changes of TCDCA-FXR axis in the USI and ileum alter nutrient sensing remains unknown.

View Article and Find Full Text PDF

The gastrointestinal tract transmits feeding-regulatory signals to the brain via neuronal and hormonal pathways. Here we studied the interaction between the orexigenic gastric peptide, ghrelin, and the anorectic intestinal peptide, glucagon-like peptide 1 (GLP-1), in terms of feeding regulation via the vagal afferents. GLP-1 preadministration 30 min before ghrelin administration to rats and mice abolished ghrelin-induced food intake, while ghrelin preadministration abolished the anorectic effect of GLP-1.

View Article and Find Full Text PDF

Objective: Conjugated bile acids are metabolised by upper small intestinal microbiota, and serum levels of taurine-conjugated bile acids are elevated and correlated with insulin resistance in people with type 2 diabetes. However, whether changes in taurine-conjugated bile acids are necessary for small intestinal microbiome to alter insulin action remain unknown.

Design: We evaluated circulating and specifically brain insulin action using the pancreatic-euglycaemic clamps in high-fat (HF) versus chow fed rats with or without upper small intestinal healthy microbiome transplant.

View Article and Find Full Text PDF