The latest advances in petawatt laser technology within the ELI Beamlines project have stimulated the development of large surface area dielectrically coated mirrors meeting all demanding requirements for guiding the compressed 30 J, 25 fs HAPLS laser beam at 10 Hz repetition rate and a center wavelength of 810 nm entirely in vacuum. We describe the production and evaluation of TaO/HfO/SiO ion beam sputtered coated (440 × 290 × 75) mm beam transport mirrors. No crazing was observed after thirty vacuum-air cycles.
View Article and Find Full Text PDFIn this paper, the theoretical foundation of quantizing nanolaminates is explained, and the dependence of the optical band gap on quantum-well thickness is demonstrated. The production is investigated by applying molecular dynamics growth simulation and by correlating the results with layers deposited by ion beam sputtering and atomic layer deposition. The properties of manufactured nanolaminates are then compared to the theoretical behavior, and good agreement is found.
View Article and Find Full Text PDFDielectric components are essential for laser applications. Chirped mirrors are applied to compress the temporal pulse broadening crucial in the femtosecond regime. However, the design sensitivity and the electric field distribution of chirped mirrors is complex often resulting in low laser induced damage resistances.
View Article and Find Full Text PDFPlasma deposition techniques like ion-beam-sputtering (IBS) are state of the art to manufacture high quality optical components for laser applications. Besides the well optimized process and monitoring systems, the coating material selection is integral to achieve optimum optical performances. Applying the IBS technology, an approach is presented to create novel materials by the direct application of binary oxides in a quantizing structure.
View Article and Find Full Text PDFA fast Fourier-based measurement system to determine phase, group delay, and group delay dispersion during optical coating processes is proposed. The in situ method is based on a Michelson interferometer with a broad band light source and a very fast spectrometer. To our knowledge, group delay dispersion measurements directly on the moving substrates during a deposition process for complex interference coatings have been demonstrated for the first time.
View Article and Find Full Text PDF