Background And Aims: Accessible noninvasive screening tools for metabolic dysfunction-associated steatotic liver disease (MASLD) are needed. We aim to explore the performance of a deep learning-based artificial intelligence (AI) model in distinguishing the presence of MASLD using 12-lead electrocardiogram (ECG).
Methods: This is a retrospective study of adults diagnosed with MASLD in Olmsted County, Minnesota, between 1996 and 2019.
A clinical trial represents a large commitment from all individuals involved and a huge financial obligation given its high cost; therefore, it is wise to make the most of all collected data by learning as much as possible. A multistate model is a generalized framework to describe longitudinal events; multistate hazards models can treat multiple intermediate/final clinical endpoints as outcomes and estimate the impact of covariates simultaneously. Proportional hazards models are fitted (one per transition), which can be used to calculate the absolute risks, that is, the probability of being in a state at a given time, the expected number of visits to a state, and the expected amount of time spent in a state.
View Article and Find Full Text PDFIntroduction: The timing of plasma biomarker changes is not well understood. The goal of this study was to evaluate the temporal co-evolution of plasma and positron emission tomography (PET) Alzheimer's disease (AD) biomarkers.
Methods: We included 1408 Mayo Clinic Study of Aging and Alzheimer's Disease Research Center participants.
Whether a relationship exists between cerebrovascular disease and Alzheimer's disease has been a source of controversy. Evaluation of the temporal progression of imaging biomarkers of these disease processes may inform mechanistic associations. We investigate the relationship of disease trajectories of cerebrovascular disease (white matter hyperintensity, WMH, and fractional anisotropy, FA) and Alzheimer's disease (amyloid and tau PET) biomarkers in 2406 Mayo Clinic Study of Aging and Mayo Alzheimer's Disease Research Center participants using accelerated failure time models.
View Article and Find Full Text PDF