Publications by authors named "T M Tawfik"

Structural lightweight concrete (SLWC) is crucial for reducing building weight, reducing structural loads, and enhancing energy efficiency through lower thermal conductivity. This study explores the effects of incorporating silica fume (SF), micro-polypropylene (micro-PP), and macro-PP fibers on the workability, thermal properties, and strength of SLWC. SF was added to all mixtures, substituting 10% of the Portland cement (PC), except for the control mixture.

View Article and Find Full Text PDF

This study compares the workability, mechanical, and thermal characteristics of structural self-compacting lightweight concrete (SCLWC) formulations using pumice aggregate (PA), expanded perlite aggregate (EPA), fly ash (FA), and silica fume (SF). FA and SF were used as partial substitutes for cement at a 10% ratio in various mixes, impacting different aspects: According to the obtained results, FA enhanced the workability but SF reduced it, while SF improved the compressive and splitting tensile strengths more than FA. EPA, used as a fine aggregate alongside PA, decreased the workability, compressive strength, and splitting tensile strength compared to the control mix (K0).

View Article and Find Full Text PDF

The absence of biodegradability exhibited by plastics is a matter of significant concern among environmentalists and scientists on a global scale. Therefore, it is essential to figure out potential pathways for the use of recycled plastics. The prospective applications of its utilisation in concrete are noteworthy.

View Article and Find Full Text PDF

Recently, the usage of a cold-bonded method in the production of artificial green geopolymer coarse aggregates (GCA) has been crucial from an economic and environmental perspective because the sintering method consumes an enormous quantity of energy and generates a significant quantity of pollutants. This research investigated the manufacture of GCA via cold-bonded pelletization using two distinct industrial byproducts (GGBFS and FA) via a new and simpler pelletization technology. Three different binders were used to produce three distinct types of GCAs as partial replacements for natural coarse aggregate (NCA) at varying replacement rates (0%, 25%, 50%, and 75%).

View Article and Find Full Text PDF

The goal of this paper is to investigate the impact of nano-materials on the mechanical and electrochemical properties of self-cleaning concrete. Nano-titanium dioxide and nano-zinc oxide were used as additives for this purpose. Additionally, a comparative study on the effect of using these materials on the self-cleaning concrete's characteristics was conducted.

View Article and Find Full Text PDF