This study investigates carbon, hydrogen, nitrogen and chlorine isotope fractionation during the transformation of 3-chloroaniline (3-CA) via direct photolysis, TiO photocatalytic degradation at neutral condition and hydrolysis at pH 3, pH 7 and pH 11. Direct photolysis and ∙OH reaction (UV/HO) showed similar inverse isotope fractionation (ε) for carbon (1.9 ± 0.
View Article and Find Full Text PDFChemical probes have gained importance in the elucidation of signal transduction in biology. Insufficient selectivity and potency, lack of cellular activity and inappropriate use of chemical probes has major consequences on interpretation of biological results. The catalytic subunit of phosphoinositide 3-kinase α (PI3Kα) is one of the most frequently mutated genes in cancer, but fast-acting, high-quality probes to define PI3Kα's specific function to clearly separate it from other class I PI3K isoforms, are not available.
View Article and Find Full Text PDFThe hydrogen and carbon isotope fractionation factor (εH, εC) of dimethyl-, diethyl‑ and dibutyl phthalic acid ester during photosensitized degradation by artificial sunlight with Fe(III) ions and iron minerals (hematite, goethite and magnetite) in aqueous solution were examined by compound-specific isotope analysis (CSIA) in order to analyze the degradation mechanism. Hematite does not catalyze photosensitized degradation of phthalates. The correlation of H and C isotope fractionation (Λ = ΔδH/ΔδC) of phthalates with increasing chain length (dimethyl-; diethyl‑; and dibutyl-) were compared with values of the ∙OH radical model reaction with the aromatic ring as well as acidic and alkaline hydrolysis.
View Article and Find Full Text PDFImportance: In the neurotypical brain, regions develop in coordinated patterns, providing a fundamental scaffold for brain function and behavior. Whether altered patterns contribute to clinical profiles in neurodevelopmental conditions, including autism, remains unclear.
Objectives: To examine if, in autism, brain regions develop differently in relation to each other and how these differences are associated with molecular/genomic mechanisms and symptomatology.
Stemness and pluripotency are mediated by transcriptional master regulators that promote self-renewal and repress cell differentiation, among which is the high-mobility group (HMG) box transcription factor SOX2. Dysregulated SOX2 expression, by contrast, leads to transcriptional aberrations relevant to oncogenic transformation, cancer progression, metastasis, therapy resistance, and relapse. Here, we report a post-transcriptional mechanism by which the cytosolic pool of SOX2 contributes to these events in an unsuspected manner.
View Article and Find Full Text PDF