Int J High Perform Comput Appl
January 2023
We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus obscure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes.
View Article and Find Full Text PDFUnlabelled: We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus ob-scure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes.
View Article and Find Full Text PDFThe COVID-19 global outbreak represents the most significant epidemic event since the 1918 influenza pandemic. Simulations have played a crucial role in supporting COVID-19 planning and response efforts. Developing scalable workflows to provide policymakers quick responses to important questions pertaining to logistics, resource allocation, epidemic forecasts and intervention analysis remains a challenging computational problem.
View Article and Find Full Text PDFWe report a modular five step synthetic route to the febrifugines that employs 2-(chloromethyl)allyl-trimethylsilane as a conjunctive reagent for the coupling of the piperidine and quinazolinone groups. We also demonstrate the application of a recent Rh-catalyzed quinazolinone synthesis for the facile generation of febrifugine analogs.
View Article and Find Full Text PDFA Rh-catalyzed ortho-amidation of 2-aryloxazolines offers an efficient and direct route to a range of sulfonamides. The scope of the reaction is very broad with respect to sulfonamide substrate, but the position and electronic nature of the substituents on the aryl moiety of the oxazoline lead to a surprising modulation of reactivity. The reactivity of sulfonamides in comparison to trifluoroacetamide is compared, the latter undergoing Rh-catalyzed amidation more rapidly.
View Article and Find Full Text PDF