The Komodo dragon () is an endangered, island-endemic species with a naturally restricted distribution. Despite this, no previous studies have attempted to predict the effects of climate change on this iconic species. We used extensive Komodo dragon monitoring data, climate, and sea-level change projections to build spatially explicit demographic models for the Komodo dragon.
View Article and Find Full Text PDFPaleoclimatic data are used in eco-evolutionary models to improve knowledge of biogeographical processes that drive patterns of biodiversity through time, opening windows into past climate-biodiversity dynamics. Applying these models to harmonised simulations of past and future climatic change can strengthen forecasts of biodiversity change. StableClim provides continuous estimates of climate stability from 21,000 years ago to 2100 C.
View Article and Find Full Text PDFThe stability of regional climates on millennial timescales is theorised to be a primary determinant of nearby diversification [1-5]. Using simulated patterns of past temperature change at monthly timescales [6], we show that the locations of climatically stable regions are likely to have varied considerably across and within millennia during glacial-interglacial cycles of the Late Quaternary. This result has important implications for the role of regional climate stability in theories of speciation, because long-term climate refugia are typically presumed to be 'cradles' of diversity (areas of high speciation) only if they remain stable across Milankovitch climate oscillations [1-5], which operate on multi-millennial time scales [7].
View Article and Find Full Text PDFThe current distribution of species, environmental conditions and their interactions represent only one snapshot of a planet that is continuously changing, in part due to human influences. To distinguish human impacts from natural factors, the magnitude and pace of climate shifts, since the Last Glacial Maximum, are often used to determine whether patterns of diversity today are artefacts of past climate change. In the absence of high-temporal resolution palaeoclimate reconstructions, this is generally done by assuming that past climate change occurred at a linear pace between widely spaced (usually, ≥1,000 years) climate snapshots.
View Article and Find Full Text PDFIncreased market viability of harvest residues as forest bioenergy feedstock may escalate removal of coarse woody debris in managed forests. Meanwhile, many forest invertebrates use coarse woody debris for cover, food, and reproduction. Few studies have explicitly addressed effects of operational-scale woody biomass harvesting on invertebrates following clearcutting.
View Article and Find Full Text PDF