Canine-assisted interactions (CAIs) have been explored to offer therapeutic benefits to human participants in various contexts, from addressing cancer-related fatigue to treating post-traumatic stress disorder. Despite their widespread adoption, there are still unresolved questions regarding the outcomes for both humans and animals involved in these interactions. Previous attempts to address these questions have suffered from core methodological weaknesses, especially due to absence of tools for an efficient objective evaluation and lack of focus on the canine perspective.
View Article and Find Full Text PDFMajor trauma is a risk factor for venous thromboembolism (VTE). Trauma guidelines recommend prompt initiation of pharmacologic VTE prophylaxis. While early initiation is recommended, delays in therapy can occur.
View Article and Find Full Text PDFBackground And Objective: Recommendations of first-line therapies for metastatic hormone-sensitive (mHSPC), nonmetastatic castrate-resistant (M0CRPC), and metastatic castrate-resistant (mCRPC) prostate cancer do not account for cardiotoxicity due to a lack of clear prior evidence. This manuscript assesses cardiotoxicity of these therapies.
Methods: We searched Ovid Medline, Elsevier Embase, and the Cochrane Library for randomized clinical trials (RCTs) from database inception to January 14, 2024.
Attaining viable thermoelectric cooling at cryogenic temperatures is of considerable fundamental and technological interest for electronics and quantum materials applications. In-device temperature control can provide more efficient and precise thermal environment management compared with conventional global cooling. The application of a current and perpendicular magnetic field gives rise to cooling by generating electron-hole pairs on one side of the sample and to heating due to their recombination on the opposite side, which is known as the Ettingshausen effect.
View Article and Find Full Text PDFIn band insulators, without a Fermi surface, adiabatic transport can exist due to the geometry of the ground state wavefunction. Here we show that for systems driven at a small but finite frequency ω, transport likewise depends sensitively on quantum geometry. We make this statement precise by expressing the Kubo formula for conductivity as the variation of the time-dependent polarization with respect to the applied field.
View Article and Find Full Text PDF