Publications by authors named "T M Herne"

This report investigates the effect of DNA length and the presence of an anchoring group on the assembly of presynthesized oligonucleotides at a gold surface. The work seeks to advance fundamental insight into issues that impact the structure and behavior of surface-immobilized DNA layers, as in, for instance, DNA microarray and biosensor devices. The present study contrasts immobilization of single-stranded DNA (ssDNA) containing a terminal, 5' hexanethiol anchoring group with that of unfunctionalized oligonucleotides for lengths from 8 to 48 bases.

View Article and Find Full Text PDF

Association constants for ruthenium(III) hexaamine and cobalt(III) tris(2,2'-bipyridine) with solution and surface-immobilized DNA were determined. The interaction of the cationic redox molecules with calf thymus DNA was monitored via normal pulse voltammetry with analysis of the mass-transfer limited current assuming a discrete binding-site model. Single-stranded DNA was immobilized on gold via self-assembly of a 5' hexanethiol linker.

View Article and Find Full Text PDF

We have developed an electrochemical method to quantify the surface density of DNA immobilized on gold. The surface density of DNA, more specifically the number of nucleotide phosphate residues, is calculated from the amount of cationic redox marker measured at the electrode surface. DNA was immobilized on gold by forming mixed monolayers of thiol-derivitized, single-stranded oligonucleotide and 6-mercapto-1-hexanol.

View Article and Find Full Text PDF

We describe a Raman imaging microscope that produces high-fidelity, large format Raman images and Raman spectra from samples as small as 1 micron in size. Laser illumination is delivered to the object by means of an infinity corrected microscope objective, either by a galvanometer scanning system or a widefield fibre optic. Wavelength selection of Raman scattered emission is achieved by an acousto-optic tunable filter (AOTF), which maintains image fidelity and provides either continuous or random wavelength selection.

View Article and Find Full Text PDF

Interference from borate is observed in surface-enhanced Raman (SER) spectra of lysine and propylamine obtained with borohydride-reduced silver colloids. Borate bands are also observed in the spectra of other basic analytes, as well as when certain variations are made in the silver colloid preparation. The relative intensities of the analyte and borate bands depend on the pH of the colloid, the extent of oxidation of the colloid surface, and the relative adsorptivities of the analyte and borate.

View Article and Find Full Text PDF