Publications by authors named "T M Fromhold"

We investigate the quantum-classical correspondence for a particle tunnelling through a periodic superlattice structure with an applied bias voltage and an additional tilted harmonic oscillator potential. We show that the quantum mechanical tunnelling rate between neighbouring quantum wells of the superlattice is determined by the topology of the phase trajectories of the analogous classical system. This result also enables us to estimate, with high accuracy, the tunnelling rate between two spatially displaced simple harmonic oscillator states using a classical model, and thus gain new insight into this generic quantum phenomenon.

View Article and Find Full Text PDF

The evolution of human cognitive function is reliant on complex social interactions which form the behavioural foundation of who we are. These social capacities are subject to dramatic change in disease and injury; yet their supporting neural substrates remain poorly understood. Hyperscanning employs functional neuroimaging to simultaneously assess brain activity in two individuals and offers the best means to understand the neural basis of social interaction.

View Article and Find Full Text PDF

The ability to collect high-quality neuroimaging data during ambulatory participant movement would enable a wealth of neuroscientific paradigms. Wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has the potential to allow participant movement during a scan. However, the strict zero magnetic field requirement of OPMs means that systems must be operated inside a magnetically shielded room (MSR) and also require active shielding using electromagnetic coils to cancel residual fields and field changes (due to external sources and sensor movements) that would otherwise prevent accurate neuronal source reconstructions.

View Article and Find Full Text PDF

We use phenomenological modelling and detailed experimental studies of charge carrier transport to investigate the dependence of the electrical resistivity,, on gate voltage,, for a series of monolayer graphene field effect transistors with mobilities,, ranging between 5000 and 250 000 cmVsat low-temperature. Our measurements over a wide range of temperatures from 4 to 400 K can be fitted by the universal relationμ=4/eδnmaxfor all devices, whereρmaxis the resistivity maximum at the neutrality point andis an 'uncertainty' in the bipolar carrier density, given by the full width at half maximum of the resistivity peak expressed in terms of carrier density,. This relation is consistent with thermal broadening of the carrier distribution and the presence of the disordered potential landscape consisting of so-called electron-hole puddles near the Dirac point.

View Article and Find Full Text PDF

Quantum sensors based on cold atoms are being developed which produce measurements of unprecedented accuracy. Due to shifts in atomic energy levels, quantum sensors often have stringent requirements on their internal magnetic field environment. Typically, background magnetic fields are attenuated using high permeability magnetic shielding, with the cancelling of residual and introduction of quantisation fields implemented with coils inside the shield.

View Article and Find Full Text PDF