Publications by authors named "T M Frayling"

Obesity and cardiometabolic disease often, but not always, coincide. Distinguishing subpopulations within which cardiometabolic risk diverges from the risk expected for a given body mass index (BMI) may facilitate precision prevention of cardiometabolic diseases. Accordingly, we performed unsupervised clustering in four European population-based cohorts (N ≈ 173,000).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how rare non-coding genetic variations affect complex traits, specifically focusing on human height by analyzing data from over 333,100 individuals across three large datasets.
  • Researchers found 29 significant rare variants linked to height, with impacts ranging from a decrease of 7 cm to an increase of 4.7 cm, after considering previously known variants.
  • The team also identified specific non-coding variants near key genes associated with height, demonstrating a new method for understanding the effects of rare variants in regulatory regions using whole-genome sequencing.
View Article and Find Full Text PDF
Article Synopsis
  • Blood-derived DNA methylation shows potential for early detection of dementia risk, linking biological factors with lifestyle and environmental influences.
  • A multivariate methylation risk score (MMRS) was developed, predicting mild cognitive impairment independently of age and sex, alongside significant future risk of cognitive decline in Alzheimer’s and Parkinson’s diseases.
  • The study highlights the integration of machine learning and omics data to enhance dementia risk prediction at the population level.
View Article and Find Full Text PDF

Mendelian randomization (MR) is an epidemiological approach that utilizes genetic variants as instrumental variables to estimate the causal effect of an exposure on a health outcome. This paper investigates an MR scenario in which genetic variants aggregate into clusters that identify heterogeneous causal effects. Such variant clusters are likely to emerge if they affect the exposure and outcome via distinct biological pathways.

View Article and Find Full Text PDF