Publications by authors named "T M Fandel"

L-selectin, a lectin-like receptor on all leukocyte classes, functions in adhesive and signaling roles in the recruitment of myeloid cells from the blood to sites of inflammation. Here, we consider L-selectin as a determinant of neurological recovery in a murine model of spinal cord injury (SCI). Spinal cord-injured, L-selectin knock-out (KO) mice (male) showed improved long-term recovery with greater white matter sparing relative to wild-type (WT) mice and reduced oxidative stress in the injured cord at 72 h post-SCI.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is often accompanied by reduced bladder compliance, which contributes to adverse conditions including urinary tract infections and vesicoureteral reflux. Reduced compliance is, in part, attributed to extensive remodeling of the bladder wall, including the extracellular matrix (ECM). Here, we tested the hypothesis that blockade of matrix metalloproteinases (MMPs), known for their ability to remodel the ECM, improves bladder compliance in dogs with SCI.

View Article and Find Full Text PDF

Neuropathic pain and bladder dysfunction represent significant quality-of-life issues for many spinal cord injury patients. Loss of GABAergic tone in the injured spinal cord may contribute to the emergence of these symptoms. Previous studies have shown that transplantation of rodent inhibitory interneuron precursors from the medial ganglionic eminence (MGE) enhances GABAergic signaling in the brain and spinal cord.

View Article and Find Full Text PDF

Objective: To compare the effect of complete transection (tSCI) and contusion spinal cord injury (cSCI) on bladder function and bladder wall structure in rats.

Materials And Methods: A total of 30 female Sprague-Dawley rats were randomly divided into three equal groups: an uninjured control, a cSCI and a tSCI group. The cSCI group underwent spinal cord contusion, while the tSCI group underwent complete spinal cord transection.

View Article and Find Full Text PDF

Matrix metalloproteinase-9 is elevated within the acutely injured murine spinal cord and blockade of this early proteolytic activity with GM6001, a broad-spectrum matrix metalloproteinase inhibitor, results in improved recovery after spinal cord injury. As matrix metalloproteinase-9 is likewise acutely elevated in dogs with naturally occurring spinal cord injuries, we evaluated efficacy of GM6001 solubilized in dimethyl sulfoxide in this second species. Safety and pharmacokinetic studies were conducted in naïve dogs.

View Article and Find Full Text PDF