Purpose: Information on incentives for COVID-19 testing is needed to understand effective practices that encourage testing uptake. We describe characteristics of those who received an incentive after performing a rapid antigen test.
Design: Cross-sectional descriptive analysis of survey data.
Ions of structure X[N(O)NO]-, examples of which have seen increasing use as probes for studying the biology of nitric oxide (NO) over the past decade, have a varied chemical history spanning nearly two centuries. Nevertheless, they have not been widely appreciated for their physicochemical similarities. Here we begin a series of systematic inquiries into the fundamental chemistry of such compounds aimed at identifying both the characteristics that justify considering them as a group and the factors that contribute to observed differences in their physicochemical properties.
View Article and Find Full Text PDFNitric oxide (NO), a multifaceted bioregulatory agent and an environmental pollutant, can also cause genomic alterations. In vitro, NO deaminated deoxynucleosides, deoxynucleotides, and intact DNA at physiological pH. That similar DNA damage can also occur in vivo was tested by treating Salmonella typhimurium strain TA1535 with three NO-releasing compounds, including nitroglycerin.
View Article and Find Full Text PDFSelected nucleophile/nitric oxide adducts [compounds which contain the anionic moiety, XN(O-)N = O] were studied for their ability to release nitric oxide spontaneously in aqueous solution and for possible vasoactivity. The diversity of structures chosen included those in which the nucleophile residue, X, was that of a secondary amine [Et2N, as in [Et2NN(N = O)O]Na, 1], a primary amine [iPrHN, as in [iPrHNN(N = O)O]Na, 2], a polyamine, spermine [as in the zwitterion H2N(CH2)3NH2+(CH2)4N[N(N = O)O-](CH2)3NH2, 3], oxide [as in Na[ON(N = O)O]Na, 4], and sulfite [as in NH4[O3SN(N = O)O]NH4, 5]. The rate constants (k) for decomposition in pH 7.
View Article and Find Full Text PDF