Interaction of bovine β-lactoglobulin (BLG) with several flavor compounds (FC) (2-methylpyrazine, vanillin, 2-acetylpyridine, 2- and 3-acetylthiophene, methyl isoamyl ketone, heptanone, octanone, and nonanone) was studied by high-sensitivity differential scanning calorimetry. The denaturation temperature, enthalpy, and heat capacity increment were determined at different FC concentrations. It was found that the denaturation temperature and heat capacity increment do not depend on the FC concentration, while the denaturation enthalpy decreases linearly with the FC concentration.
View Article and Find Full Text PDFEnergetics of chitosan (CS) polyplexes and conformational stability of bound DNA were studied at pH 5.0 by ITC and HS-DSC, respectively. The CS-DNA binding isotherm was well approximated by the McGhee-von Hippel model suggesting the binding mechanism to be a cooperative attachment of interacting CS ligands to the DNA matrix.
View Article and Find Full Text PDFOligochitosan, a low molecular weight derivative of the cationic biopolymer, chitosan, currently shows a great potential of application as a biodegradable non-toxic stimuli-sensitive drug carrier. This paper aimed to elucidate the thermoresponsive potential of oligochitosan and the temperature-controlled drug binding and release to shed light on oligochitosan potential in stimuli-responsive drug delivery. Mechanisms of thermoresponsive behavior of oligochitosan induced by β-glycerophosphate (GP) were investigated using ITC, DSC, and DLS.
View Article and Find Full Text PDFResponsiveness of drug delivery systems (DDS) against internal and external stimuli attracts wide interest as a mechanism that can provide both site-specific release at the target place and feedback regulated release rate. Biological environment is quite complex and the effects that the intricate medium may have on the effectiveness of the stimulus have received certain attention. Differently, the impact that the drug loaded may have itself on the responsiveness of the DDS has been underestimated.
View Article and Find Full Text PDFMost drugs besides their intended activity, express undesired side effects, including those with the engagement of cell membrane. Previously, such undesired nonspecific effects on the membrane have been shown for a number of widely used nonsteroidal anti-inflammatory drugs. In this paper, we study the mechanism of interaction between moxifloxacin (Mox), antibacterial drug of broad specificity, with lipid bilayer of the liposomes of various compositions as a model of cell membrane using a combination of spectroscopy methods, including ATR-FTIR spectroscopy, circular dichroism, UV and fluorescence spectroscopy.
View Article and Find Full Text PDF