Publications by authors named "T M Burg"

Incidental mortality in fisheries is a major driver of population declines for albatrosses and petrels globally. However, accurate identification of species can be difficult due to the poor condition of bycaught birds and/or visual similarities between closely related species. We assessed three genetic markers for their ability to distinguish the 36 albatross and petrel species listed in Annex 1 to the Agreement on the Conservation of Albatrosses and Petrels (ACAP) and in Australia's Threat Abatement Plan (TAP) for the bycatch of seabirds during oceanic longline fishing operations.

View Article and Find Full Text PDF

Cryofixation by ultra-rapid freezing is widely regarded as the gold standard for preserving cell structure without artefacts for electron microscopy. However, conventional cryofixation technologies are not compatible with live imaging, making it difficult to capture dynamic cellular processes at a precise time. To overcome this limitation, we recently introduced a new technology, called microfluidic cryofixation.

View Article and Find Full Text PDF

Wolfram syndrome (WS) is a rare childhood disease characterized by diabetes mellitus, diabetes insipidus, blindness, deafness, neurodegeneration and eventually early death, due to autosomal recessive mutations in the WFS1 (and WFS2) gene. While it is categorized as a neurodegenerative disease, it is increasingly becoming clear that other cell types besides neurons may be affected and contribute to the pathogenesis. MRI studies in patients and phenotyping studies in WS rodent models indicate white matter/myelin loss, implicating a role for oligodendroglia in WS-associated neurodegeneration.

View Article and Find Full Text PDF

Animals are strongly connected to the environments they live in and may become adapted to local environments. Examining genetic-environment associations of key indicator species, like seabirds, provides greater insights into the forces that drive evolution in marine systems. Here we examined a RADseq dataset of 19,213 SNPs for 99 rhinoceros auklets () from five western Pacific and 10 eastern Pacific breeding colonies.

View Article and Find Full Text PDF

Understanding how both contemporary and historical physical barriers influence gene flow is key to reconstructing evolutionary histories and can allow us to predict species' resilience to changing environmental conditions. During the last glacial maximum (LGM), many high latitude North American bird species were forced into glacial refugia, including mountain bluebirds (). Within their current breeding range, mountain bluebirds still experience a wide variety of environmental conditions and barriers that may disrupt gene flow and isolate populations.

View Article and Find Full Text PDF