Publications by authors named "T M BRODY"

The Drosophila larval ventral nerve cord (VNC) shares many similarities with the spinal cord of vertebrates and has emerged as a major model for understanding the development and function of motor systems. Here, we use high-quality scRNA-seq, validated by anatomical identification, to create a comprehensive census of larval VNC cell types. We show that the neural lineages that comprise the adult VNC are already defined, but quiescent, at the larval stage.

View Article and Find Full Text PDF

Identifying causal relationships is complicated. Researchers usually overlook causality behind relationships which can generate misleading associations. Herein, we carefully examine the parametric relationship and causality between wildfire smoke exposure and animal performance and behavior metrics over a period of 2 yr in Reno, Nevada.

View Article and Find Full Text PDF

Drosophila provides a powerful genetic system and an excellent model to study the development and function of the nervous system. The fly's small brain and complex behavior has been instrumental in mapping neuronal circuits and elucidating the neural basis of behavior. The fast pace of fly development and the wealth of genetic tools has enabled systematic studies on cell differentiation and fate specification, and has uncovered strategies for axon guidance and targeting.

View Article and Find Full Text PDF

Single-cell RNA sequencing provides a new approach to an old problem: how to study cellular diversity in complex biological systems. This powerful tool has been instrumental in profiling different cell types and investigating, at the single-cell level, cell states, functions, and responses. However, mining these data requires new analytical and statistical methods for high-dimensional analyses that must be customized and adapted to specific goals.

View Article and Find Full Text PDF

This study has taken advantage of the availability of the assembled genomic sequence of flies, mosquitos, ants and bees to explore the presence of ultraconserved sequence elements in these phylogenetic groups. We compared non-coding sequences found within and flanking developmental genes to homologous sequences in and Many of the conserved sequence blocks (CSBs) that constitute -regulatory DNA, recognized by alignment protocols, are also conserved in and Also conserved is the position but not necessarily the orientation of many of these ultraconserved CSBs (uCSBs) with respect to flanking genes. Using the mosquito algorithm, we have also identified uCSBs shared among distantly related mosquito species.

View Article and Find Full Text PDF