Peptide stability to proteases has been a major requirement for developing peptide therapeutics. This study investigates the effects of peptide stability on antimicrobial and antibiofilm activity under various conditions. For this purpose, two human cathelicidin-derived peptides differing in stability to proteases were utilized.
View Article and Find Full Text PDFThis study aims to push the frontier of the engineering of human cathelicidin LL-37, a critical antimicrobial innate immune peptide that wards off invading pathogens. By sequential truncation of the smallest antibacterial peptide (KR12) of LL-37 and conjugation with fatty acids, with varying chain lengths, a library of lipopeptides is generated. These peptides are subjected to antibacterial activity and hemolytic assays.
View Article and Find Full Text PDFAntibiotic resistance poses a threat to our society, and 10 million people could die by 2050. To design potent antimicrobials, we made use of the antimicrobial peptide database (APD). Using the database filtering technology, we identified a useful template and converted it into an effective peptide WW291 against methicillin-resistant (MRSA).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2020
Antimicrobial peptides are important candidates for developing new classes of antibiotics because of their potency against antibiotic-resistant pathogens. Current research focuses on topical applications and it is unclear how to design peptides with systemic efficacy. To address this problem, we designed two potent peptides by combining database-guided discovery with structure-based design.
View Article and Find Full Text PDFAntimicrobial peptides are essential components of innate immune systems that protect hosts from infection. They are also useful candidates for developing a new generation of antibiotics to fight antibiotic-resistant pathogens. Human innate immune peptide LL-37 can inhibit biofilm formation, but suffers from high cost due to a long peptide length and rapid protease degradation.
View Article and Find Full Text PDF