Publications by authors named "T Lepoutre"

Background: In the present work, we aimed at modeling a relaxation experiment which consists in selecting a subfraction of a cell population and observing the speed at which the entire initial distribution for a given marker is reconstituted.

Methods: For this we first proposed a modification of a previously published mechanistic two-state model of gene expression to which we added a state-dependent proliferation term. This results in a system of two partial differential equations.

View Article and Find Full Text PDF

We study traveling wave solutions for a reaction-diffusion model, introduced in the article Calvez et al. (Regime switching on the propagation speed of travelling waves of some size-structured myxobacteriapopulation models, 2023), describing the spread of the social bacterium Myxococcus xanthus. This model describes the spatial dynamics of two different cluster sizes: isolated bacteria and paired bacteria.

View Article and Find Full Text PDF

Predicting the adaptation of populations to a changing environment is crucial to assess the impact of human activities on biodiversity. Many theoretical studies have tackled this issue by modeling the evolution of quantitative traits subject to stabilizing selection around an optimal phenotype, whose value is shifted continuously through time. In this context, the population fate results from the equilibrium distribution of the trait, relative to the moving optimum.

View Article and Find Full Text PDF

Differentiation is the process whereby a cell acquires a specific phenotype, by differential gene expression as a function of time. This is thought to result from the dynamical functioning of an underlying Gene Regulatory Network (GRN). The precise path from the stochastic GRN behavior to the resulting cell state is still an open question.

View Article and Find Full Text PDF