Publications by authors named "T Landgraf"

A honey bee colony functions as an integrated collective, with individuals coordinating their behaviour to adapt and respond to unexpected disturbances. Nest homeostasis is critical for colony function; when ambient temperatures increase, individuals switch to thermoregulatory roles to cool the nest, such as fanning and water collection. While prior work has focused on bees engaged in specific behaviours, less is known about how responses are coordinated at the colony level, and how previous tasks predict behavioural changes during a heat stress.

View Article and Find Full Text PDF

The honey bee waggle dance is one of the most prominent examples of abstract communication among animals: successful foragers convey new resource locations to interested followers via characteristic "dance" movements in the nest, where dances advertise different locations on different overlapping subregions of the "dance floor." To this day, this spatial separation has not been described in detail, and it remains unknown how it affects the dance communication. Here, we evaluate long-term recordings of foraging at natural and artificial food sites.

View Article and Find Full Text PDF

Shepherding, the task of guiding a herd of autonomous individuals in a desired direction, is an essential skill to herd animals, enable crowd control and rescue from danger. Equipping robots with the capability of shepherding would allow performing such tasks with increased efficiency and reduced labour costs. So far, only single-robot or centralized multi-robot solutions have been proposed.

View Article and Find Full Text PDF

Introduction: This article will review the processes utilized to develop simple effective containment engineering controls. Short-Term Use Biocontainment Bubbles-Yale (STUBB-Ys), as Yale refers to them, were designed, built, tested, and implemented to protect members of the Yale University community from exposure to SARS-CoV-2 aerosols. STUBB-Ys were designed and created in conjunction with end users, constructed by Environmental Health and Safety (EHS) or partner groups, and tested onsite after installation to verify effective operation and containment.

View Article and Find Full Text PDF

Collective motion is commonly modeled with static interaction rules between agents. Substantial empirical evidence indicates, however, that animals may adapt their interaction rules depending on a variety of factors and social contexts. Here, we hypothesized that leadership performance is linked to the leader's responsiveness to the follower's actions and we predicted that a leader is followed longer if it adapts to the follower's avoidance movements.

View Article and Find Full Text PDF