Biomimetic hydrogels have garnered increased interest due to their considerable potential for use in various fields, such as tissue engineering, 3D cell cultivation, and drug delivery. The primary challenge for applying hydrogels in tissue engineering is accurately evaluating their mechanical characteristics. In this context, we propose a method using scanning ion conductance microscopy (SICM) to determine the rigidity of living human breast cancer cells MCF-7 cells grown on a soft, self-assembled Fmoc-FF peptide hydrogel.
View Article and Find Full Text PDFThe growing interest in biomimetic hydrogels is due to their successful applications in tissue engineering, 3D cell culturing and drug delivery. The major characteristics of hydrogels include swelling, porosity, degradation rate, biocompatibility, and mechanical properties. Poor mechanical properties can be regarded as the main limitation for the use of hydrogels in tissue engineering, and advanced techniques for its precise evaluation are of interest.
View Article and Find Full Text PDFSome sulfur-oxidizing bacteria playing an important role in global geochemical cycles utilize thiocyanate as the sole source of energy and nitrogen. In these bacteria the process of thiocyanate into cyanate conversion is mediated by thiocyanate dehydrogenases - a recently discovered family of copper-containing enzymes with the three‑copper active site unique among the other copper proteins. To get a deeper insight into the structure and molecular mechanism of action of thiocyanate dehydrogenases we isolated, purified, and comprehensively characterized an enzyme from the bacterium Pelomicrobium methylotrophicum.
View Article and Find Full Text PDFMutations in SCN4A gene encoding Na1.4 channel α-subunit, are known to cause neuromuscular disorders such as myotonia or paralysis. Here, we study the effect of two amino acid replacements, K1302Q and G1306E, in the DIII-IV loop of the channel, corresponding to mutations found in patients with myotonia.
View Article and Find Full Text PDFFabry disease is a lysosomal storage disorder caused by a significant decrease in the activity or absence of the enzyme α-galactosidase A. The diagnostics of Fabry disease during newborn screening are reasonable, due to the availability of enzyme replacement therapy. This paper presents an electrochemical method using complementary metal-oxide semiconductor (CMOS)-compatible ion-sensitive field effect transistors (ISFETs) with hafnium oxide-sensitive surfaces for the detection of α-galactosidase A activity in dried blood spot extracts.
View Article and Find Full Text PDF