Publications by authors named "T L Skovhus"

The magnetic properties of solids are typically analyzed in terms of Heisenberg models where the electronic structure is approximated by interacting localized spins. However, even in such models the evaluation of thermodynamic properties constitutes a major challenge and is usually handled by a mean field decoupling scheme. The random phase approximation (RPA) comprises a common approach and is often applied to evaluate critical temperatures although it is well known that the method is only accurate wellthe critical temperature.

View Article and Find Full Text PDF

Continual challenges due to microbial corrosion are faced by the maritime, offshore renewable and energy sectors. Understanding the biofilm and microbiologically influenced corrosion interaction is hindered by the lack of robust and reproducible physical models that reflect operating environments. A novel dual anaerobic biofilm reactor, using a complex microbial consortium sampled from marine littoral sediment, allowed the electrochemical performance of UNS G10180 carbon steel to be studied simultaneously in anaerobic abiotic and biotic artificial seawater.

View Article and Find Full Text PDF

In newly commissioned drinking-water polyethylene (PE) pipes, biofilm develops on the inner pipe surface. The microbial community composition from colonization to the establishment of mature biofilms is less known, including the effect on the distributed water quality. Biofilm development was followed through 1.

View Article and Find Full Text PDF
Article Synopsis
  • GPAW is a powerful, open-source Python program for studying how electrons behave in materials using a method called density functional theory (DFT).
  • It can use different ways to represent these electron states, making it very flexible compared to other similar programs.
  • GPAW can also do advanced calculations for things like excited states, magnetic properties, and has recently added support to work faster with special computer hardware called GPUs.
View Article and Find Full Text PDF

Microbiologically influenced corrosion (MIC) is a phenomenon of increasing concern that affects various materials and sectors of society. MIC describes the effects, often negative, that a material can experience due to the presence of microorganisms. Unfortunately, although several research groups and industrial actors worldwide have already addressed MIC, discussions are fragmented, while information sharing and willingness to reach out to other disciplines are limited.

View Article and Find Full Text PDF