Publications by authors named "T L Kaduce"

Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14C]alpha-linolenic or [1-14C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14C]22:6n-3.

View Article and Find Full Text PDF

Cytochrome P450 (CYP) omega-oxidases convert arachidonic acid (AA) to 20-hydroxyeicosatetraenoic acid (20-HETE), a lipid mediator that modulates vascular tone. We observed that a microsomal preparation containing recombinant human CYP4F3B, which converts AA to 20-HETE, converted eicosapentaenoic acid (EPA) to 20-OH-EPA. Likewise, docosahexaenoic acid (DHA) was converted to 22-OH-DHA, indicating that human CYP4F3B also can oxidize 22-carbon omega-3 fatty acids.

View Article and Find Full Text PDF

20-Hydroxyeicosatetraenoic acid (20-HETE), an arachidonic acid (AA) metabolite synthesized by cytochrome P-450 omega-oxidases, is reported to produce vasoconstriction in the cerebral circulation. However, we find that like 14,15-epoxyeicosatrienoic acid (14,15-EET), 20-HETE produces dilation of mouse basilar artery preconstricted with U-46619 in vitro. Indomethacin inhibited the vasodilation produced by 20-HETE but not by 14,15-EET, suggesting a cyclooxygenase (COX)-dependent mechanism.

View Article and Find Full Text PDF

20-Carboxyeicosatetraenoic acid (20-COOH-AA) is a bioactive metabolite of 20-hydroxyeicosatetraenoic acid (20-HETE), an eicosanoid that produces vasoconstriction in the cerebral circulation. We found that smooth muscle (MSMC) and endothelial (MEC) cultures obtained from mouse brain microvessels convert [3H]20-HETE to 20-COOH-AA, indicating that the cerebral vasculature can produce this metabolite. The [3H]20-COOH-AA accumulated primarily in the culture medium, together with additional radiolabeled metabolites identified as the chain-shortened dicarboxylic acids 18-COOH-18:4, 18-COOH-18:3, and 16-COOH-16:3.

View Article and Find Full Text PDF

We studied the arachidonic acid (AA)-mediated modulation of large-conductance Ca2+-activated K+ (BK) channels in coronary arterial smooth myocytes from lean control and Zucker Diabetic Fatty (ZDF) rats. A total of 1 micromol/l AA enhanced BK current by 274% in lean and by 98% in ZDF rats. After incubation with 10 micromol/l indomethacin, 1 micromol/l AA increased BK currents by 80% in lean and by 70% in ZDF rats.

View Article and Find Full Text PDF