In the field of quantum materials, understanding anomalous behavior under charge degrees of freedom through bond formation is of fundamental importance, with two key concepts: Dimerization and charge order at different cation sites. The coexistence of both dimerization and charge ordering is unusually found in NaRu2O4, even in its metallic state at room temperature. Our work unveils the origin of the interplay of these effects within metallic single-crystalline NaRu2O4.
View Article and Find Full Text PDFThe conversion of nitrate-rich wastewater and biomass-derived blocks into high-value products using renewably generated electricity is a promising approach to modulate the artificial carbon and nitrogen cycle. Here, a new synthetic strategy of WO sub-nanoclusters is reported and supported on carbon materials as novel efficient electrocatalysts for nitrate reduction and its coupling with α-keto acids. In acidic solutions, the NH-NHOH selectivity can also optimized by adjusting the potential, with the total FE exceeding 80% over a wide potential range.
View Article and Find Full Text PDFSince the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Accurate control of charge transfer pathways is critical to unlocking the full potential of charge transfer plasmons (CTPs) and exploring their diverse applications. We show that the intentional manipulation of junctions in Al nanocrosses on graphene induces asymmetry, unlocking unexpected charge transfer pathways and facilitating the generation of coupled resonators. The junction asymmetry, which is induced by nanotrench formation facilitated by focused electron beam irradiation, provides a versatile means to achieve precise and controlled interconnect manipulation.
View Article and Find Full Text PDFStudy Design: Assessment of bone formation in an ovine interbody fusion study.
Objective: To compare OsteoAdapt SP, which consists of AMP-2, a modified variant of recombinant human bone morphogenetic protein (rhBMP-2) bound to a tricalcium phosphate-containing carrier, to autologous iliac crest bone graft (ICBG) in a lumbar interbody fusion model.
Summary Of Background Data: Treatment of lumbar disk degeneration often involves spinal fusion to reduce pain and motion at the affected spinal segment by insertion of a cage containing bone graft material.