Publications by authors named "T L F Gouveia"

Solid-state batteries with lithium metal anodes are considered the next major technology leap with respect to today's lithium-ion batteries, as they promise a significant increase in energy density. Expectations for solid-state batteries from the automotive and aviation sectors are high, but their implementation in industrial production remains challenging. Here, we report a solid-state lithium-metal battery enabled by a polymer electrolyte consisting of a poly(DMADAFSI) cationic polymer and LiFSI in PyrFSI as plasticizer.

View Article and Find Full Text PDF

Two different types of electrolytes (co-solvent and multi-salt) are tested for use in high voltage LiNiMnO||Si/graphite full cells and compared against a carbonate-based standard LiPF containing electrolyte (baseline). Ex situ postmortem XPS analysis on both anodes and cathodes over the life span of the cells reveals a continuously growing SEI and CEI for the baseline electrolyte. The cells cycled in the co-solvent electrolyte exhibited a relatively thick and long-term stable CEI (on LNMO), while a slowly growing SEI was determined to form on the Si/graphite.

View Article and Find Full Text PDF

Herein, the design of novel and safe electrolyte formulations for high-voltage Ni-rich cathodes is reported. The solvent mixture comprising 1,1,2,2-tetraethoxyethane and propylene carbonate not only displays good transport properties, but also greatly enhances the overall safety of the cell thanks to its low flammability. The influence of the conducting salts, that is, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI), and of the additives lithium bis(oxalato)borate (LiBOB) and lithium difluoro(oxalato)borate (LiDFOB) is examined.

View Article and Find Full Text PDF

Objectives: Age has a significant impact on systemic lupus erythematosus (SLE). However, data on very late-onset SLE (vlSLE) are scarce. We have compared the clinical and serological features of vlSLE patients with younger-onset patients.

View Article and Find Full Text PDF

Over the past years, there has been an increasing concern about the occurrence of antineoplastic drugs in water bodies. The incomplete removal of these pharmaceuticals from wastewaters has been confirmed by several scientists, making it urgent to find a reliable technique or a combination of techniques capable to produce clean and safe water. In this work, the combination of nanofiltration and ozone (O)-based processes (NF + O, NF + O/HO and NF + O/HO/UVA) was studied aiming to produce clean water from wastewater treatment plant (WWTP) secondary effluents to be safely discharged into water bodies, reused in daily practices such as aquaculture activities or for recharging aquifers used as abstraction sources for drinking water production.

View Article and Find Full Text PDF