Publications by authors named "T L Emmerzaal"

Exposure to early-life stress (ES) increases the vulnerability to develop metabolic diseases as well as cognitive dysfunction, but the specific biological underpinning of the ES-induced programming is unknown. Metabolic and cognitive disorders are often comorbid, suggesting possible converging underlying pathways. Mitochondrial dysfunction is implicated in both metabolic diseases and cognitive dysfunction and chronic stress impairs mitochondrial functioning.

View Article and Find Full Text PDF

Exposure to antibiotic treatment has been associated with increased vulnerability to various psychiatric disorders. However, a research gap exists in understanding how adolescent antibiotic therapy affects behavior and cognition. Many antibiotics that target bacterial translation may also affect mitochondrial translation resulting in impaired mitochondrial function.

View Article and Find Full Text PDF

Individuals with mitochondrial disease often present with psychopathological comorbidity, and mitochondrial dysfunction has been proposed as the underlying pathobiology in various psychiatric disorders. Several studies have suggested that medications used to treat neuropsychiatric disorders could directly influence mitochondrial function. This review provides a comprehensive overview of the effect of these medications on mitochondrial function.

View Article and Find Full Text PDF

Mitochondrial metabolism is increasingly implicated in psychopathologies and mood disorders, including post-traumatic stress disorder (PTSD). We recently reported that mice exposed to a novel paradigm for the induction of PTSD-like behavior displayed reduced mitochondrial electron transport chain (mtETC) complex activity as well as decreased multi-system fatty acid oxidation (FAO) flux. Based on these results, we hypothesized that stressed and PTSD-like animals would display evidence of metabolic reprogramming in both cerebellum and plasma consistent with increased energetic demand, mitochondrial metabolic reprogramming, and increased oxidative stress.

View Article and Find Full Text PDF

Antidepressants have been shown to influence mitochondrial function directly, and suboptimal mitochondrial function (SMF) has been implicated in complex psychiatric disorders. In the current study, we used a mouse model for trait SMF to test the hypothesis that chronic fluoxetine treatment in mice subjected to chronic stress would negatively impact brain bioenergetics, a response that would be more pronounced in mice with trait SMF. In contrast, we hypothesized that chronic ketamine treatment would positively impact mitochondrial function in both WT and mice with SMF.

View Article and Find Full Text PDF