Publications by authors named "T L Dellovade"

Human microglia are critically involved in Alzheimer's disease (AD) progression, as shown by genetic and molecular studies. However, their role in tau pathology progression in human brain has not been well described. Here, we characterized 32 human donors along progression of AD pathology, both in time-from early to late pathology-and in space-from entorhinal cortex (EC), inferior temporal gyrus (ITG), prefrontal cortex (PFC) to visual cortex (V2 and V1)-with biochemistry, immunohistochemistry, and single nuclei-RNA-sequencing, profiling a total of 337,512 brain myeloid cells, including microglia.

View Article and Find Full Text PDF

In mice, dietary cuprizone causes brain demyelination with subsequent spontaneous remyelination upon return to normal chow. Heavy water (HO) labeling with mass spectrometric analysis can be used to measure brain de novo synthesis of several myelin components including cholesterol, phospholipids, galactocereboside (GalC) and myelin-associated proteins. 24-hydroxycholesterol (24-OHC), the major metabolite of brain cholesterol, is detected in blood and is believed to be specifically derived from CNS cholesterol metabolism.

View Article and Find Full Text PDF

Background: Mouse models that overexpress human mutant Tau (P301S and P301L) are commonly used in preclinical studies of Alzheimer's Disease (AD) and while several drugs showed therapeutic effects in these mice, they were ineffective in humans. This leads to the question to which extent the murine models reflect human Tau pathology on the molecular level.

Methods: We isolated insoluble, aggregated Tau species from two common AD mouse models during different stages of disease and characterized the modification landscape of the aggregated Tau using targeted and untargeted mass spectrometry-based proteomics.

View Article and Find Full Text PDF

In this study we aimed to reduce tau pathology, a hallmark of Alzheimer's Disease (AD), by activating mTOR-dependent autophagy in a transgenic mouse model of tauopathy by long-term dosing of animals with mTOR-inhibitors. Rapamycin treatment reduced the burden of hyperphosphorylated and aggregated pathological tau in the cerebral cortex only when applied to young mice, prior to the emergence of pathology. Conversely, PQR530 which exhibits better brain exposure and superior pharmacokinetic properties, reduced tau pathology even when the treatment started after the onset of pathology.

View Article and Find Full Text PDF
Article Synopsis
  • Antigen-specific immunotherapy, using ATX-MS-1467, offers a targeted treatment for multiple sclerosis by focusing on disease-associated T-cell epitopes from myelin basic protein (MBP).
  • In a mouse model of multiple sclerosis, ATX-MS-1467 treatment not only improved clinical symptoms and reduced inflammation but also restored blood-brain barrier integrity after established disease.
  • The therapy promotes a shift in the immune response from inflammation to tolerance, suggesting it could help in managing multiple sclerosis, especially in its early stages.
View Article and Find Full Text PDF