Core components of the N-glycosylation pathway are known, but the metabolic and post-translational mechanisms regulating this pathway in normal and disease states remain elusive. Using a multi-omic approach in zebrafish, we discovered a mechanism whereby O-GlcNAcylation directly impacts the expression and abundance of two rate-limiting proteins in the N-linked glycosylation pathway. We show in a model of an inherited glycosylation disorder PMM2-CDG, congenital disorders of glycosylation that phosphomannomutase deficiency is associated with increased levels of UDP-GlcNAc and protein O-GlcNAcylation.
View Article and Find Full Text PDFJ Inherit Metab Dis
September 2024
SRD5A3-CDG is a congenital disorder of glycosylation (CDG) resulting from pathogenic variants in SRD5A3 and follows an autosomal recessive inheritance pattern. The enzyme encoded by SRD5A3, polyprenal reductase, plays a crucial role in synthesizing lipid precursors essential for N-linked glycosylation. Despite insights from functional studies into its enzymatic function, there remains a gap in understanding global changes in patient cells.
View Article and Find Full Text PDFALG1-CDG is a rare, clinically variable metabolic disease, caused by the defect of adding the first mannose (Man) to N-acetylglucosamine (GlcNAc)-pyrophosphate (PP)-dolichol to the growing oligosaccharide chain, resulting in impaired N-glycosylation of proteins. N-glycosylation has a key role in functionality, stability, and half-life of most proteins. Therefore, congenital defects of glycosylation typically are multisystem disorders.
View Article and Find Full Text PDFPhosphomannomutase 2 (PMM2) converts mannose-6-phospahate to mannose-1-phosphate; the substrate for GDP-mannose, a building block of the glycosylation biosynthetic pathway. Pathogenic variants in the PMM2 gene have been shown to be associated with protein hypoglycosylation causing PMM2-congenital disorder of glycosylation (PMM2-CDG). While mannose supplementation improves glycosylation in vitro, but not in vivo, we hypothesized that liposomal delivery of mannose-1-phosphate could increase the stability and delivery of the activated sugar to enter the targeted compartments of cells.
View Article and Find Full Text PDF