Systemic sclerosis is a complex idiopathic disease originating from an intricate interplay between genetic susceptibility, environmental factors, and epigenetic modifications. This scoping review aims to map the advancements made regarding DNA methylation abnormalities and histone modifications in systemic sclerosis in the past decade. A literature search was conducted using three electronic databases (Scopus, Web of Science and PubMed) to identify relevant articles.
View Article and Find Full Text PDFAlkaptonuria is a disease often forgotten because of its rarity. Its pathogenic mechanism is the deficiency of one of the enzymes of the tyrosine degradation pathway-homogentisate-1, 2-dioxygenase, which sequelae is accumulation and deposition of its metabolite homogentisic acid in connective tissues and urine. Alkaptonuria presents as a clinical triad-darkening urine upon prolonged exposure to air, pigmentation of connective tissues and debilitating arthropathy.
View Article and Find Full Text PDFThis paper presents the most comprehensive review and meta-analysis of the literature on cultural distance and firm internationalization to date. We analyze the effects of cultural distance on key strategic decisions throughout the entire process of internationalization. For the preinvestment stage, we examine the decisions on where to invest (location choice), how much to invest (degree of ownership), and how to organize the foreign expansion (entry and establishment mode).
View Article and Find Full Text PDFA computational approach for identification and assessment of genomic sequence variability (GeneSV) is described. For a given nucleotide sequence, GeneSV collects information about the permissible nucleotide variability (changes that potentially preserve function) observed in corresponding regions in genomic sequences, and combines it with conservation/variability results from protein sequence and structure-based analyses of evaluated protein coding regions. GeneSV was used to predict effects (functional vs.
View Article and Find Full Text PDFBackground: Most of the currently used methods for protein function prediction rely on sequence-based comparisons between a query protein and those for which a functional annotation is provided. A serious limitation of sequence similarity-based approaches for identifying residue conservation among proteins is the low confidence in assigning residue-residue correspondences among proteins when the level of sequence identity between the compared proteins is poor. Multiple sequence alignment methods are more satisfactory--still, they cannot provide reliable results at low levels of sequence identity.
View Article and Find Full Text PDF