Publications by authors named "T Kleefstra"

Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.

View Article and Find Full Text PDF

Kleefstra syndrome (KLEFS) is a genetic neurodevelopmental disorder caused by haploinsufficiency of EHMT1. The full spectrum of clinical features and genotype-phenotype correlations is currently not fully understood. We performed a retrospective chart review of patients with KLEFS evaluated at the Boston Children's Hospital Kleefstra Clinic.

View Article and Find Full Text PDF

Neurodevelopmental disorders (NDD) comprise clinical conditions with high genetic heterogeneity and a notable enrichment of genes involved in regulating chromatin structure and function. The EHMT1/2 epigenetic complex plays a crucial role in repression of gene transcription in a highly tissue- and temporal-specific manner. Mutations resulting in heterozygous loss-of-function (LoF) of EHMT1 are implicated in Kleefstra syndrome 1 (KS1).

View Article and Find Full Text PDF

Kleefstra syndrome (KLEFS1) is a rare genetic neurodevelopmental disorder affecting multiple body systems. It continues to be under-researched, and its prevalence remains unknown. This paper builds on the international KLEFS1 cohort of 172 individuals based on the caregiver-reported outcomes collected within the online data collection platform GenIDA and reports the occurrence, frequency and severity of symptoms in KLEFS1.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers identified bi-allelic disruptive variants as the cause of autosomal recessive intellectual developmental disorder type 65, while dominant variants are harder to link to specific traits due to their presence in unaffected individuals.
  • The study involved a retrospective analysis of 21 individuals with likely pathogenic variants, focusing on clinical information and molecular data from their families.
  • Key findings revealed that those with dominant disruptive variants exhibited more developmental and behavioral problems, while individuals with dominant missense variants had a higher occurrence of renal and skin anomalies, enhancing the understanding of the related neurodevelopmental disorder.
View Article and Find Full Text PDF