Publications by authors named "T Kathiresan"

Deepfakes are viral ingredients of digital environments, and they can trick human cognition into misperceiving the fake as real. Here, we test the neurocognitive sensitivity of 25 participants to accept or reject person identities as recreated in audio deepfakes. We generate high-quality voice identity clones from natural speakers by using advanced deepfake technologies.

View Article and Find Full Text PDF

The progression of multisystem neurodegenerative diseases such as ataxia significantly impacts speech and communication, necessitating adaptive clinical care strategies. With the deterioration of speech, Alternative and Augmentative Communication (AAC) can play an ever increasing role in daily life for individuals with ataxia. This review describes the spectrum of AAC resources available, ranging from unaided gestures and sign language to high-tech solutions like speech-generating devices (SGDs) and eye-tracking technology.

View Article and Find Full Text PDF

Unlabelled: is a traditional plant used in Asian and African countries for its wide nutraceutical and therapeutic effects for the treatment of various ailments. The fruit of has various biological properties such as anti-bacterial, anti-oxidant, anti-cancer. Using the molecular docking based investigation; we explored around twenty three bioactive phytochemicals in fruit against human cancer.

View Article and Find Full Text PDF

The current study focuses on developing a tumour-targeted functionalised nanocarrier that wraps hollow mesoporous silica nanoparticles. The guanidine carbonate and curcumin are immobilised on the surface of 3-aminopropyl-triethoxy silane (APTES)-decorated hollow mesoporous silica nanoparticles (HMSNP), as confirmed through XPS and NMR analysis. XPS analysis demonstrates that the shape of the hysteresis loops is modified and that pore volume and pore diameter are consequently decreased compared to control.

View Article and Find Full Text PDF

The main aims in the development of a novel drug delivery vehicle is to efficiently carry therapeutic drugs in the body's circulatory system and successfully deliver them to the targeted site as needed to safely achieve the desired therapeutic effect. In the present study, a passive targeted functionalised nanocarrier was fabricated or wrapped the hollow mesoporous silica nanoparticles with 3-aminopropyl triethoxysilane (APTES) to prepare APTES-coated hollow mesoporous silica nanoparticles (HMSNAP). A nitrogen sorption analysis confirmed that the shape of hysteresis loops is altered, and subsequently the pore volume and pore diameters of GaC-HMSNAP was reduced by around 56 and 37%, respectively, when compared with HMSNAP.

View Article and Find Full Text PDF