Publications by authors named "T Karasu"

Herein, a conjugated conducting polymer-based impedimetric aptasensor has been developed to detect beta-human chorionic gonadotropin (bHCG), the one of the important biomarkers in gynecology, from synthetic human urine samples. In this context, gold electrodes were, firstly coated with pyrrole and pyrrole-3-carboxylic acid to obtain the poly(pyrrole-pyrrole-3-carboxylic acid) [poly(Py-PyCOOH)] conductive copolymer by cyclic voltammetry (CV). Then, bHCG-specific peptide aptamer was covalently linked onto the surface via applying a well-known carbodiimide-succinimide chemistry.

View Article and Find Full Text PDF

Intrauterine devices (IUDs) are widely used in preventing fertilization as contracepting devices. In market, they are produced as T-shaped polyethylene (or propylene) and metal (especially copper) composites. Although the metal component is utilized to provide antibacterial efficacy, prolonged implantation and the presence of a wide range of bacteria flora in the intrauterine environment make IUDs susceptible to bacterial contamination, biofilm formation, and unpleasant infection.

View Article and Find Full Text PDF

Lab-on-a-chip (LOC) as an alternative biosensing approach concerning cost efficiency, parallelization, ergonomics, diagnostic speed, and sensitivity integrates the techniques of various laboratory operations such as biochemical analysis, chemical synthesis, or DNA sequencing, etc. on miniaturized microfluidic single chips. Meanwhile, LOC tools based on molecularly imprinted biosensing approach permit their applications in various fields such as medical diagnostics, pharmaceuticals, etc.

View Article and Find Full Text PDF

In this study, poly(2-hydroxyethyl methacrylate) [p(HEMA)] based hydrogels responsive to the pH, temperature and magnetic field were synthesized. The surface properties of p(HEMA) were improved by designing the stimuli-responsive hydrogels made of MAGA, NIPAAm and methacrylate-decorated magnetite nanoparticles as a function of pH-, thermo- and magnetic responsive cell culture surfaces. These materials were then modified an abundant extracellular matrix component, type I collagen, which has been considered as a biorecognition element to increase the applicability of hydrogels to cell viability.

View Article and Find Full Text PDF