Antibody-drug conjugates (ADCs) have begun to fulfil their promise as targeted cancer therapeutics with ten clinical approvals to date. As the field matures, much attention has focused upon the key factors required to produce safe and efficacious ADCs. Recently the role that linker-payload reagent design has on the properties of ADCs has been highlighted as an important consideration for developers.
View Article and Find Full Text PDFTrialkylphosphines tris(2-carboxy-ethyl)-phosphine and tris(3-hydroxypropyl)-phosphine are popular reagents for the reduction of cysteine residues in bioconjugation reactions using maleimides. However, it has been demonstrated that these phosphines are reactive toward maleimide, necessitating their removal before the addition of the Michael acceptor. Here, a method using water-soluble PEG-azides is reported for the quenching of trialkylphosphines in situ, which is demonstrated to improve the level of maleimide conjugation to proteins.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) are a promising class of anticancer agents which have undergone substantial development over the past decade and are now achieving clinical success. The development of novel site-specific conjugation technologies enables the systematic study of architectural features within the antibody conjugated drug linker that may affect overall therapeutic indices. Here we describe the results of a systematic study investigating the impact of drug-linker design on the in vivo properties of a series of homogeneous ADCs with a conserved site of conjugation, a monodisperse drug loading, a lysosomal release functionality and monomethyl auristatin E as a cytotoxic payload.
View Article and Find Full Text PDFWater-soluble trialkylphosphines such as tris(carboxyethyl)phosphine (TCEP) and trishydroxypropyl phosphine (THPP) are effective agents for reducing disulfide bonds in proteins and are increasingly becoming the reagents of choice for bioconjugation strategies that modify cysteine (thiol containing) amino acids. These reducing agents are often considered as being chemically compatible with Michael acceptors such as maleimides and, as such, are often not removed prior to performing protein conjugation reactions. Here, we demonstrate the rapid and irreversible reaction of both TCEP and THPP with derivatives of the commonly employed thiol alkylating groups, maleimide and vinyl sulfone.
View Article and Find Full Text PDFThioglycoligases are engineered enzymes for the synthesis of thioglycosides that are derived from retaining glycosidases by replacing the acid/base catalyst. The optimal choice of substitution for the acid/base mutant is currently unknown, so to investigate this question a complete acid/base library of the model glycosidase Bacillus circulans xylanase (Bcx) was generated by using site-saturation mutagenesis. A novel screening approach combining active site titration with semiquantitative product analysis by thin layer chromatography was established and used to evaluate specific activities of each mutant enzyme within crude cell lysates.
View Article and Find Full Text PDF