To establish protection against harmful foreign antigens, the small intestine harbors guardian sites called Peyer's patches (PPs). PPs take up antigens through microfold (M) cells and transfer them to the sub-epithelial dome (SED), which contains a high density of mononuclear phagocytes (MPs), for T cell-priming. Accumulating evidence indicates that SED-MPs have unique functions other than T cell-priming to facilitate mucosal immune responses; however, the crucial factors regulating the functions of SED-MPs have not been determined.
View Article and Find Full Text PDFFood components suppressing small intestinal tumorigenesis are not well-defined partly because of the rarity of this tumor type compared to colorectal tumors. Using mice, a mouse model for intestinal tumorigenesis, and antigen-free diet, we report here that food antigens serve this function in the small intestine. By depleting Peyer's patches (PPs), immune inductive sites in the small intestine, we found that PPs have a role in the suppression of small intestinal tumors and are important for the induction of small intestinal T cells by food antigens.
View Article and Find Full Text PDFThe strain dependence of the Johari-Goldstein (JG)-β relaxation time, as well as the directional dependence, was systematically investigated for stretched cross-linked polybutadiene using time-domain interferometry. We found that the strain dependence of the JG-β relaxation time is directionally dependent, contrary to expectation: the relaxation time of the JG-β motion, whose displacement is perpendicular to the stretching direction, decreases with stretching, whereas the relaxation time of the parallel JG-β motion changes little. This result is distinct from the previously reported strain dependence of the α relaxation time, where the relaxation time increases isotropically with stretching.
View Article and Find Full Text PDF