Background: Ovarian cancer remains a formidable challenge in oncology, necessitating innovative therapeutic approaches. Claudin-6 (CLDN6), a member of the tight junction molecule CLDN family, exhibits negligible expression in healthy tissues but displays aberrant upregulation in various malignancies, including ovarian cancer. Although several therapeutic modalities targeting CLDN6 are currently under investigation, there is still a need for more potent therapeutic options.
View Article and Find Full Text PDFSpecific labeling of proteins using membrane-permeable fluorescent probes is a powerful technique for bioimaging. Cationic fluorescent dyes with high fluorescence quantum yield, photostability, and water solubility provide highly useful scaffolds for protein-labeling probes. However, cationic probes generally show undesired accumulation in organelles, which causes a false-positive signal in localization analysis.
View Article and Find Full Text PDFStrain engineering for gallium nitride has been studied by many researchers to improve the performance of various devices (i.e., light-emitting diodes, laser diodes, power devices, high electron mobility transistors, and so on).
View Article and Find Full Text PDFThe ability to monitor proteolytic pathways that remove unwanted and damaged proteins from cells is essential for understanding the multiple processes used to maintain cellular homeostasis. In this study, we have developed a new protein-labeling probe that employs an 'OFF-ON-OFF' fluorescence switch to enable real-time imaging of the expression (fluorescence ON) and degradation (fluorescence OFF) of PYP-tagged protein constructs in living cells. Fluorescence switching is modulated by intramolecular contact quenching interactions in the unbound probe (fluorescence OFF) being disrupted upon binding to the PYP-tag protein, which turns fluorescence ON.
View Article and Find Full Text PDFThe extracellular adenosine triphosphate (ATP) concentration is highly elevated in the tumor microenvironment (TME) and remains tightly regulated in normal tissues. Using phage display technology, we establish a method to identify an antibody that can bind to an antigen only in the presence of ATP. Crystallography analysis reveals that ATP bound in between the antibody-antigen interface serves as a switch for antigen binding.
View Article and Find Full Text PDF