Publications by authors named "T Kacprowski"

Motivation: The availability of longitudinal omics data is increasing in metabolomics research. Viewing metabolomics data over time provides detailed insight into biological processes and fosters understanding of how systems react over time. However, the analysis of longitudinal metabolomics data poses various challenges, both in terms of statistical evaluation and visualization.

View Article and Find Full Text PDF

Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs) (1-3). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs.

View Article and Find Full Text PDF

Background: Brain-derived neurotrophic factor (BDNF) is essential for antidepressant treatment of major depressive disorder (MDD). Our repeated studies suggest that DNA methylation of a specific CpG site in the promoter region of exon IV of the BDNF gene (CpG -87) might be predictive of the efficacy of monoaminergic antidepressants such as selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), and others. This trial aims to evaluate whether knowing the biomarker is non-inferior to treatment-as-usual (TAU) regarding remission rates while exhibiting significantly fewer adverse events (AE).

View Article and Find Full Text PDF

Summary: Diseases can be caused by molecular perturbations that induce specific changes in regulatory interactions and their coordinated expression, also referred to as network rewiring. However, the detection of complex changes in regulatory connections remains a challenging task and would benefit from the development of novel nonparametric approaches. We develop a new ensemble method called BoostDiff (boosted differential regression trees) to infer a differential network discriminating between two conditions.

View Article and Find Full Text PDF

Molecular profiling techniques such as metagenomics, metatranscriptomics or metabolomics offer important insights into the functional diversity of the microbiome. In contrast, 16S rRNA gene sequencing, a widespread and cost-effective technique to measure microbial diversity, only allows for indirect estimation of microbial function. To mitigate this, tools such as PICRUSt2, Tax4Fun2, PanFP and MetGEM infer functional profiles from 16S rRNA gene sequencing data using different algorithms.

View Article and Find Full Text PDF