Publications by authors named "T K Shonk"

The objective of this study was to demonstrate 1H MR spectroscopy (MRS) changes in cerebral metabolites after acute head trauma. Twenty-five patients (12 children, 13 adults) were examined with quantitative 1H MRS after closed head injury. Clinical grade (Glasgow Coma Scale [GCS]) and outcome (Rancho Los Amigos Medical Center Outcome Score [ROS]) were correlated with quantitative neurochemical findings.

View Article and Find Full Text PDF

Early prediction of outcome after global hypoxia of the brain requires accurate determination of the nature and extent of neurological injury and is cardinal for patient management. Cerebral metabolites of gray and white matter were determined sequentially after near-drowning using quantitative 1H nuclear magnetic resonance spectroscopy (MRS) in 16 children. Significant metabolite abnormalities were demonstrated in all patients compared with their age-matched normal controls.

View Article and Find Full Text PDF

In a trial involving 21 patients with dementia and 3 healthy control subjects, a comparison between the major cerebral metabolite ratios obtained with an established manually optimized proton MR spectroscopic examination and those obtained with an automated proton MR spectroscopic procedure shows that the two techniques provide very comparable results.

View Article and Find Full Text PDF

The purpose of this study was to determine cerebral myo-inositol (mI) in adults with Down syndrome (DS), and to trace the chronobiology of DS to Alzheimer disease (AD). AD has characteristic neuropathology of neurofibrillary plaques and tangles; indirect evidence links this to earlier deposition of beta-amyloid. Elevated mI, which distinguishes AD from other common dementias, is also elevated in 23 young patients who have DS without dementia.

View Article and Find Full Text PDF

Objective: A trial was conducted to establish the added diagnostic value of an automated proton MR spectroscopy (MRS) examination (PROBE).

Materials And Methods: The PROBE and MRS were compared for metabolite ratios of normal controls and 21 patients. In addition, PROBE was performed in either the occipital cortex (gray matter) or the parietal cortex (white matter) or, more rarely, within the confines of a focal lesion identified on MRI, using a GE Signa 1.

View Article and Find Full Text PDF