In this work, we report the results of density functional theory (DFT) calculations on a van der Waals (VdW) heterostructure formed by vertically stacking single-layers of tungsten disulfide and graphene (WS2/graphene) for use as an anode material in lithium-ion batteries (LIBs). The electronic properties of the heterostructure reveal that the graphene layer improves the electronic conductivity of this hybrid system. Phonon calculations demonstrate that the WS2/graphene heterostructure is dynamically stable.
View Article and Find Full Text PDFThe development of efficient electrocatalysts for the water splitting process and understanding their fundamental catalytic mechanisms are highly essential to achieving high performance in energy conversion technologies. Herein, we have synthesised spinel nickel ferrite nanofibers (NiFeO-NFs) an electrospinning (ES) method followed by a carbonization process. The resultant fiber was subjected to electrocatalytic water splitting reactions in alkaline medium.
View Article and Find Full Text PDFEffective hydrogen (H) production with surface engineering of less active catalysts by an innovative approach is followed here. In this work, a non-noble 2H phase of VS layers, which showed poor activity for hydrogen evolution reaction (HER) in 0.5 M HSO, was made highly active by decorating palladium (Pd) nanoparticles (NPs) over VS layers.
View Article and Find Full Text PDFWe report the results of density functional theory calculations on the atomic and electronic structure of solids formed by assembling ABPN (A = Ge and Sn, B = Cl, Br, and I) inorganic double helices. The calculations have been performed using a generalized gradient approximation for the exchange-correlation functional and including van der Waals interactions. Our results show that the double helices crystallize in a monoclinic lattice with van der Waals type weak interactions between the double helices.
View Article and Find Full Text PDF